
Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

1

DC-PET: A System for Data Center Performance Estimation

Peer Hasselmeyer, Nico d’Heureuse

NEC Laboratories Europe

Kurfürstenanlage 36

69115 Heidelberg, Germany

Hasselmeyer|dHeureuse@neclab.eu

Abstract

Designing data centers with adequate performance

and at the right scale is a difficult task. The load in terms

of network and CPU utilization is hard to estimate

without appropriate tools. In this paper we introduce a

data center performance estimation system which can

support planning data centers and application

deployments. The tool takes data center topologies and

applications and calculates the load expected on the

server and networking infrastructure. To quickly produce

results, the data center evaluator uses linear

programming.

1. Introduction

Data centers (DCs) are the backbone of the current

information infrastructure. They not only process Web

traffic, but also manage company-internal processes,

satisfy storage needs, and facilitate communication and

collaboration. Data centers are large and complex setups

of compute, storage and network devices. With the

advent of the cloud operating model, more and more

storage and compute loads are aggregated in ever-larger

data centers.

Building a data center includes many design

decisions, including the selection of a network topology,

the link bandwidth, and the server capacity. As data

centers are large, complex systems, tool support is

desired to guide the decisions. The majority of questions

arising in the design phase are “what-if” kind of

questions where DC designers want to quickly see what

happens if some parameters change, e.g. the network

topology or the application work load. For these kinds of

questions, perfect accuracy is not as important as the time

needed to get an answer. Rough estimates are enough to

support the design process.

In order to make designing data centers easier and to

facilitate their comparison, the authors are developing a

data center planning and evaluation tool (called DC-

PET). The tool allows assessing the impact of particular

workloads on the data center infrastructure. Many

parameters can be adjusted in order to make answering

“what-if” questions possible. The tool is based on linear

programming letting it produce answers quickly.

This paper introduces the capabilities of the DC-PET

tool. The methods for modeling data centers and

applications are detailed. The statistical metrics that the

tool can calculate and display are described and some

initial results are presented.

2. Data Center Modeling

For allowing DC-PET to analyze data center load, all

relevant artifacts of the data center must be modeled and

expressed in a machine-processable way. The model

consists of two main abstractions: the physical hardware

and the applications deployed on that hardware. In this

section, the abstractions used to describe data center

hardware are introduced.

The physical data center hardware contains devices

and links between them. The devices perform various

functions while the links are used to exchange

information between the devices. The following device

types are supported by DC-PET:

Switches: Switches connect multiple devices, such as

servers and other switches. They relay traffic from

one link to another.

Servers: Servers host and run (parts of) applications.

Servers are general-purpose in the sense that they can

host any type of application function. Depending on

the applications running on the server, incoming

traffic can result in further traffic originating at the

server, i.e., a single incoming request can result in

one or more outgoing chunks of data.

A data center might contain servers that are designed

to perform only specific functions. They are therefore

not general-purpose anymore and only application

components performing a compatible function are

allowed to be assigned to these dedicated servers.

Examples are load balancers, firewalls, and storage

servers. Within DC-PET, servers can be assigned to

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

2

arbitrarily defined groups. Every server can be part of

one or multiple groups. The deployment of

application components can then be restricted to

servers of certain groups.

Gateways: A gateway represents a connection of the

data center to the outside world, which means,

usually, “the Internet” or the data center backbone

network. In our model we assume that all traffic in

the data center is directly or indirectly created by

requests entering the data center from the outside

through a gateway. Traffic and application execution

that is completely internal to the data center can be

modeled by additional gateways that produce the

triggers for the internal traffic.

The devices are connected via physical links which

allow traffic to flow between them. Different topologies

can be used to wire data centers. DC-PET currently

supports fat-tree and n-rooted-tree (including single and

double rooted tree) topologies. Other topologies can be

plugged in on demand.

All components in the data center model have certain

restrictions. Links have a maximum bandwidth that

restricts the amount of traffic that they can carry. Servers

have a maximum processing capacity that restricts the

work load that they can process.

3. Application Modeling

Applications in DC-PET are modeled as distributed

collaborating components. Each component is called a

functional block. Applications are represented as graphs

of functional blocks. Analogous to the physical data

center model, functional blocks (the graph’s vertices)

perform various functions and the links (the graph’s

edges) are used to exchange information between the

functional blocks. Each link between two functional

blocks represents a traffic “flow”.

The links in application models are annotated with

traffic figures. These figures describe how much traffic

passes through the link in a particular direction as a

response to a request coming to the application from the

gateway. Each incoming request may result in a number

of subsequent onward requests and ultimately in a

response sent back to the originator of the initial request.

For example, a Web server that receives a request for a

particular Web page might need to fetch the page from a

storage server and a number of data items to be included

in that page from a data base server. Each incoming

request therefore results in one onward request to a

storage server and, for example, three requests to the data

base server. The Web server then creates the Web page to

be delivered to the user and sends back a response. All

data exchanges can involve different amounts of traffic

being exchanged, depending on the protocol used and the

type of data being exchanged. The amount of traffic also

linearly increases with the number of requests made to

the application.

In real applications, many requests will not always

occur, but might only happen with a certain probability,

e.g. when data is cached. To accommodate this in

applications models, in addition to the request size, there

is the probability with which a particular request happens

(averaged over a large number of requests). Both request

size and request probability are part of application

models. In Figure 1 they are attached to links as “R” and

“S”, meaning request probability and request size

respectively.

Figure 1: Example application model

Shown in Figure 1 is a Web server with a cache hit

ratio of 80%. The remaining 20% of the requests need to

be forwarded to storage (represented as a request

probability of 0.2). As a different protocol is used for

accessing storage, not only is the request probability

lower, but so is the amount of data per request (200 bytes

instead of 1000 for HTTP requests).

In addition to the traffic numbers on links, functional

blocks are annotated with CPU figures. These figures

specify how many requests can be handled by the

functional block at maximum. The Web server

component in Figure 1, for example, could handle 20

parallel requests, if deployed on its own server. The

storage component, on the other hand, could handle only

10 parallel requests.

It is important to note that our model only describes

statistical traffic and load averages, but not relationships

between requests with respect to time.

4. Deployment

For the data center evaluation, applications are

deployed onto the data center infrastructure. DC-PET

maps the functional blocks of all applications to

appropriate servers in the data center. Multiple functional

blocks can be deployed on the same physical server,

representing server virtualization.

The links between functional blocks are mapped to

physical links. Each application layer link is mapped to

one or more physical links and interconnecting devices.

As data center topologies often offer multiple routes

between servers, mapping to physical links has a certain

freedom. The method that calculates and chooses

particular routes is represented by the routing algorithm –

both in the real world as well as in DC-PET. DC-PET

Web
Server StorageGateway

R: 1
S: 1000

R: 1
S: 8400

R: 0.2
S: 200

R: 0.2
S: 8000

20 10

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

3

allows the selection of particular routing algorithms for

its evaluations. Algorithms might be selected depending

on particular data center topologies or for fulfilling

certain requirements. Through this mechanism, DC-PET

allows the evaluation and comparison of different routing

algorithms.

DC-PET can restrict assignment of functional blocks

to certain servers, thereby modeling servers that have

specific roles in the data center. The deployment of

functional blocks can be restricted to certain server

groups, making the servers of such groups assume

particular roles. Several algorithms are available that

cater for specific requirements on the selection of servers

within a group (e.g., random, round-robin).

5. Design Options for Data Center

Evaluation

Two different options – linear programming and

packet-based simulation – have been identified for

implementing the simulation functions. These two

options, which both have their advantages and

disadvantages, are briefly described in this section.

5.1. Option 1: Linear Programming

Linear Programming (LP) is a mathematical method

for finding the optimum of a mathematical model (e.g.,

maximum number of requests handled in a data center).

At its core, LP finds optimal values for a set of unknown

variables under given constraints. As its name implies,

LP requires the model to be formulated using only linear

(in)equalities. Several LP solvers exist, commercial as

well as open-source, which can solve LP problems with a

very large number of unknowns in reasonable time.

LP can be used to model aggregated data center traffic

and answer certain questions about this model. As an

example, LP can be used to determine how many service

requests a certain data center setup can handle.

5.2. Option 2: Packet-Based Network Simulation

For many years networks have been simulated by

mimicking the packet transport between the nodes (e.g.,

server, switches) as well as the node behavior itself

(delays, queues, network protocols, etc.). This approach

allows for a very flexible, and – if necessary – very fine-

grained and realistic simulation of all processes in the

network. Furthermore, a variety of statistics can be

collected during the simulation which allows the

calculation of a large number of different networking and

service metrics.

5.3. Assessment

Packet-based simulation is a proven technology that

allows calculating a large variety of metrics. The main

issue of a packet-based network simulation is that it is

very time consuming. The time required for a simulation

is, of course, dependent on the number of nodes and

services to be simulated as well as on the level of detail

used. If the level of detail is, however, reduced in order

to shorten the simulation time, the accuracy of the

simulation results might drop accordingly.

The main advantage of a data center evaluation tool

based on linear programming is that it potentially

supports analyzing several thousand servers and their

services in a reasonable amount of time. All our

simulations presented in section 9 run in under five

minutes with most of them taking less than one minute.

The purely mathematical modeling of a data center

with LP however has some limitations. These limitations

mostly stem from the fact that for LP the formulation can

use linear functions only. This limits the number of

metrics which can be evaluated using LP. Certain metrics

which might be interesting for a data center evaluation

cannot be calculated by a linear mathematical formula

(e.g., the number of dropped packets at a switch).

Another disadvantage of LP is that only a statistical

abstraction of a real data center is modeled. While the

results generated by the LP solver might be

mathematically correct for the given LP model, such

conditions might never exist in a real data center. Take,

for example, a data center that hosts two identical

applications. When finding the maximum number of

requests that can be handled by the applications, one

would expect each application to receive an equal share.

In contrast, LP solvers will usually find a solution that

apportions all requests to one application instance,

leaving the other one with no requests. Although this is a

mathematically correct solution, it might not occur in the

real world.

For DC-PET, we chose to follow a linear

programming based approach to estimating data center

performance. The main reason was the much faster

execution time of LP simulations when compared to a

packet-based approach. It was decided that quick

responses are more important than fine-grained results.

To avoid extremely unfair traffic assignments, DC-PET

includes some provisions that improve fairness of request

and bandwidth assignments.

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

4

6. Simulation Process

An LP solver is a generic tool used

to solve problems given in a specific

mathematical form. The solver itself

does not know about the physical data center, application

models, and the traffic existing in the data center. These

artifacts therefore need to be translated into a form that is

suited for the LP solver.

The first step in our simulator is to merge the

application models and the physical data center model.

As shown in Figure 2, this is done by deploying the

applications on the data center meaning that the

functional blocks of applications are assigned to servers.

Next, flows of traffic between the functional application

blocks are created. As these flows might traverse

multiple physical devices, the flows must be routed

appropriately.

Routing is the only network-related function that is

still explicitly modeled in the LP-based data center

evaluation tool. Although the routing algorithm is not

applied to each and every packet (as there are no

individual packets in the LP problem), the assignment of

traffic flows (i.e., chains of packets) to physical links

through the network is still handled by the routing

algorithm. As this assignment only happens once when

setting up the LP problem, it does not exhibit any

dynamic properties and therefore assumes a static

network that does not exhibit any link or device failures.

Although this is not the case in reality, it is a reasonable

assumption for approximating traffic load on links. As

the routing algorithm affects the assignment of traffic to

links, it has a large influence on the traffic load and

therefore on the performance of the data center.

The results of deployment and routing are expressed

as linear equations which are one main input to the LP

solver.

The other main input to the LP solver are the

constraints on link bandwidth and server CPU capacity. It

must be guaranteed that the combined traffic on a

physical link does not exceed the capacity of that link.

Furthermore, the capacity of the servers should not be

exceeded by the applications assigned to them. These

restrictions can be modeled as specific inequalities.

DC-PET automatically creates the equations needed

for expressing deployment, traffic routes, and capacity

restrictions. The created LP formulation can then be

worked on by an LP solver which takes care of finding

the actual solution for the specified problem.

Once a solution has been found, the LP solver’s

results are transformed back into the data center and

application model space. Additionally, metrics which

have not been directly calculated by the LP solver are

derived from its results, e.g. link utilization. These two

steps are performed in the “Post-processing” step.

7. Linear Programming Formulation

In this section, we provide the LP formulation used by

DC-PET. DC-PET transforms the given network and

application models into a corresponding LP formulation

and – after running the LP solver – extracts the results

and translates them back into the model domain.

The objective function of the LP system is to

maximize the total number of requests which are handled

by the data center:

 ∑
∈Aa

aRmaximize

with A being the set of all applications deployed and

Ra being the number of requests handled for application

a, a∈A. This maximization is subject to several

conditions.

The first set of conditions ensures that no link in the

network is overloaded (link capacity bounds)

L
U

∈∀≤∑
∈

lcF l

i

i

l

with Fi being the traffic rate for flow i, L being the set

of all links in the networks, Ul being the set of all flows

traversing link l, and cl being the capacity of link l.

Furthermore, the flow rates Fi are linked to the

application requests Ra rates via linear weights wi,a:

aaaii iaRwF ΦA ∈∈= ,,
,

with ΦΦΦΦa being the set of flows belonging to

application a.

Finally, the servers’ CPU utilization must not be

larger than the servers’ processing capacity, which leads

to the following set of conditions:

N
A

∈∀≤∑
∈

nxRu n

a

ana,
,

with N being the set of all server nodes, xn the

processing capacity of node n, and ua,n being the CPU

load caused on node n for each processed request of

application a.

From the above equations it can be seen that the LP

solver needs to maximize the objective function only

Functional
Block

Assignment

Flow
Creation

and Routing

LP Model
Generation

LP
Solving

Post-
processing

Figure 2: Simulation Process

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

5

with respect to the application request rates Ra. Values

for ua,n are calculated from CPU utilization figures in

application models and their assignment to servers.

Values for wi,a are calculated from bandwidth

consumption figures in application models. The set Ul is

derived from the routing of the flows between servers the

functional blocks are deployed on, and xn are constants

which can be taken directly from the network model.

8. Metrics

After the LP evaluation, its results (application request

rates and flow rates) are transformed into a number of

metrics that are potentially relevant for assessing the

performance of a data center. Metrics pertaining to links

and devices (switches, servers) can be distinguished.

8.1. Link Metrics

Data rate: This metric represents the amount of data that

is transported over a link. This measurement is

attached to a unidirectional link, specifying the traffic

that crosses that physical link in a particular direction.

This measurement is the same as the traffic-in and

traffic-out values on the ports connected to the

endpoints of this link.

Number of flows: This metric represents the number of

parallel connections that are crossing a link in one

direction. Each flow relates to one connection in one

direction between two functional application blocks.

8.2. Device Metrics

Traffic-in(-out) rate: This metric represents the amount

of data that is arriving at (emitted from) a particular

data center element. The metric is associated with a

port, which may belong to a switch, a server, or a

gateway. Elements that contain one or more ports

possess aggregate measurements of the traffic-in (out)

rate.

Flows in (out): This metric represents the number of

parallel connections that are receiving (sending)

traffic from (to) a particular port. Each connection

relates to one connection in one direction between

two functional blocks.

CPU utilization: This metric represents the utilization of

the CPU of a particular server (between 0% and

100%).

9. Experiments

The previous sections introduced the modeling

abstractions that DC-PET uses to describe data centers

and applications. This chapter details the DC topology

and application models that were evaluated with DC-PET

and shows some results.

9.1. Data Center Topologies

Our simulations were run on two different networking

topologies: a fat tree and a double-rooted tree.

Fat-tree networks are oversubscription-free

topologies, meaning that they have the same aggregate

bandwidth between all layers. They can be built in the

form of Clos networks from switches that all have the

same number of ports and link bandwidth [1]. The main

parameter for the size of the network, in particular for the

number of supported servers, is the number of ports of

each switch. An example fat-tree topology constructed

from 4-port switches is shown in Figure 3a. The topology

is structured into five layers: the server, the edge, the

aggregation, the core, and the gateway layer. In addition

to the traditional four layers of the fat tree, we introduced

the gateway layer to model connections to the outside

world. This layer is somewhat different from the others,

in the sense that the switch used there can have a

different number of ports and the links connecting to it

can have different bandwidths than the other connections

in the data center.

Routing in a fat tree is done by moving up and down

the tree depending on the locations of the traffic source

and destination. There exist multiple paths between each

layer of the tree. The simplest way to distribute traffic

across these paths is to choose a random link at each

layer whenever multiple links exist which lead to the

destination without increasing the path length.

Core

Aggregation

Edge

Servers

Pod

Switch

Server

Gatewaya)

Core

Aggregation

Access

Servers

Rack

Switch

Server

Gatewayb)

Figure 3: Data Center Topologies: a) Fat Tree; b) Double-Rooted Tree

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

6

Double-rooted trees are the currently prevailing

topology for data center networks. As shown in Figure

3b, they consist of a number of layers, namely the access,

aggregation, and core layers [2]. Servers are part of the

access layer and are connected to a top-of-rack switch,

usually with a single uplink. From there, the two roots

emerge, with both being able to replace each other for

redundancy. The aggregation layer concentrates the

traffic from the access switches and passes it on to the

core network of the data center.

To cater for the concentration of traffic towards the

root, the links between the different layers in the double-

rooted-tree topology usually provide increasing

bandwidth capacities towards the root.

9.2. Application Model: Wikipedia

The example application model that we used for

evaluating data center performance is a Web serving

example modeled closely after Wikipedia (see Figure 5).

It resembles the structure, traffic patterns, and sizes from

Wikipedia as closely as possible. The model is simplified

from the real Wikipedia architecture, mostly be removing

the functional blocks that do not deal with the (arguably)

main task of Wikipedia of serving Web pages. The links

and functional blocks are annotated with statistical

numbers taken from various sources on the Web
1
.

Figure 5: Wikipedia application model

1 The Wikipedia architecture is shown in http://upload.wikimedia.org/

wikipedia/commons/f/ff/Wikimedia-servers-2008-11-10.svg, and a

number of statistics are given at http://old.nabble.com/wikipedia-

servers-and-statistics-td21186836.html.

Most functional blocks are replicated within the

Wikipedia model. Such replication is usually introduced

for load balancing reasons, in order to increase the

capacity of the function provided by that block. Traffic

going into such functional blocks is distributed among

the participating instances according to some scheme.

Various schemes are possible. For our experiments, we

chose a uniform distribution, i.e., every functional block

of a certain type processes exactly the same amount of

traffic.

9.3. Setup

We evaluated the Wikipedia application as described

in the previous section on fat-tree and double-rooted-tree

networks. All links in the fat tree have a capacity of 1

Gbps while the links in the double-rooted tree have

capacities of 1 Gbps between the servers and the top-of-

rack (ToR) switches and 10 Gbps between the ToR and

the aggregation switches. The links to the gateway layer

have unlimited capacity in both topologies.

The fat-tree topology has been evaluated in two sizes.

One setup is constructed from 12-port switches (FT12),

the other one from 24-port switches (FT24). The data

centers host 432 and 3456 servers, respectively. The

double-rooted tree (DRT) consists of nine racks with 48

servers each (and a single 48-port ToR switch per rack),

giving the setup the same number of servers (432) as the

small fat-tree scenario.

In the experiments, every server hosts one functional

block at the maximum. We used three different

deployment algorithms: sequential, sequential/random,

and random. The sequential deployment algorithm

selects servers for functional blocks in a purely

sequential fashion, meaning that all functional blocks of a

particular type are deployed “next” to each other (see

Figure 4). Mapped to the data center topology, this means

that some racks/pods are filled completely with one type

of functional blocks (FBs), namely caches and web

servers. Uplinks from these racks/pods therefore carry

traffic from these FBs only.

Web SrvWeb SrvCacheCacheCache Web SrvGW

DBDB

MediaMedia

R:1
S:1k

R:1
S:8k

R:0.035
S:1k

R:0.035
S:8k

#svrs: 76

#reqs: 1500

#svrs: 16

#reqs: 300

#svrs: 179

#reqs: 30

#svrs: 3

#reqs: 300

Server 1 Server 2 Server 76… Server 77 … Server 255 Server 256 … Server 271 Server 272 … Server 274

Cache 1 Cache 2 Cache 76 Web 1 Web 179 DB 1 DB 16 Media 1 Media 3

Servers

Sequential

Server 275 … Server 432

empty empty

Seq/Random empty empty

… … …

…

……

…Cache 53 DB 5

Web 62

Web 101 Web 45 … Cache 4 Media 2 … Web 16 Web 98 Cache 22…

Random … DB 10 Web 159Web 152 … Cache 30 Web 84 … Media 3Web 98 DB 1…empty empty …

In
fr
a
-

st
ru
ct
u
re

D
e
p
lo
y
m
e
n
t

A
lg
o
ri
th
m

Figure 4: Deployment scenarios evaluated

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

7

The sequential/random deployment still sequentially

selects servers (meaning that computation and traffic load

are aggregated in a certain part of the data center), but

assigns functional blocks in a random fashion. Different

traffic originating from the different types of FBs is

therefore spread more equally across the data center,

potentially resulting in better performance.

The random deployment selects servers for functional

blocks randomly from the complete set of servers. As in

our experiments only 274 FBs need to be assigned while

the topologies provide 432 or 3456 servers, the

computing and network load is spread more widely.

In addition, we varied the path diversity between 1

and 20, meaning that the traffic carried by a link between

two functional blocks is distributed across 1 to 20

(randomly chosen) routes between data center

components. Path diversity decreases the chances for

overloading single links and should therefore ensure

higher throughput and with it higher performance of the

data center.

9.4. Results

Our experiments provided a number of interesting

results. First, running the simulations with bounded CPU

capacity leads to the same performance numbers for all

setups. There is no influence of the selected network

topology or the path diversity. The CPU is the bottleneck

and restricts the maximum throughput.

Next, we changed the CPU capacity to infinity in

order to find bottlenecks in the network. The limiting

factor now are the links between caches and the gateway.

These links are saturated at an incoming request rate of

about 1.2M (distributed among 76 cache instances).

Looking at the results shown in Figure 6, it can be seen

that this maximum is not always reached. Note that all

simulations were run 50 times with different random

number sequences and then averaged. The standard

deviations are shown in the figure as black bars on top of

the measurements.

From the figure it can be observed that the

deployment algorithm plays an important role in the

attainable performance. Spreading functional blocks and

thereby distributing network load more equally increases

overall throughput. The second observation is that adding

diversity to flows increases throughput. This effect is

more pronounced in fat-tree topologies than in the

double-rooted tree. The third observation is that the

double-rooted tree performs worse with sequential

deployment due to fully utilized links between the access

and the aggregation layers because of the

oversubscription ratio. Another interesting observation is

the high standard deviation for the FT24 low diversity

deployments. It highlights that some random placements

perform much worse than others. Path diversity is

therefore a necessity for efficiently utilizing fat-tree

networks.

Digging deeper into the simulation results (not shown

here) reveals that in the double-rooted tree, links between

access and aggregation layer are utilized most (average:

about 60%), compared to about 10% average utilization

at the access/server level. Looking at the distribution of

link utilization within the access level reveals an uneven

distribution: some links are fully utilized while others are

not used at all. Utilization of links in a 12-ary fat tree is

more evenly distributed with the average maximum close

to 10% on all layers.

10. Related Work

Linear Programming (LP) is a commonly used

technique for solving optimization problems in various

domains. It has been used for optimizing electrical power

networks [3] and has also been applied to communication

networks, especially in the areas of QoS routing [4][5]

and joint scheduling and routing problems [6]. The LP

formulations often make use of integer variables leading

to an Integer Linear Programming or Mixed Integer

Linear Programming problem. Both types are known to

be NP hard.

0

200

400

600

800

1000

1200

1 2 5 10 20 1 2 5 10 20 1 2 5 10 20

sequential sequential/random random

R
e

q
u

e
st

s
su

p
p

o
rt

e
d

 (
th

o
u

sa
n

d
s)

DRT

FT12

FT24

Path diversity

Deplyoment

Figure 6: Average number of requests supported

Copyright (c) 2011 IEEE Published at 2011 31st International Conference on Distributed Computing Systems Workshops

8

Instead of using LP, simulations of the behavior of

communication networks often use event-based

simulations on the level of individual packets, including

[8]. Most common is the use of ns-2, an event-based

simulator. Packet-level simulations are trying to

reproduce network behavior as closely as possible and

can therefore produce detailed and accurate results.

Besides their disadvantage of requiring large amounts of

time to generate results, packet-level simulators cannot

determine the maximum supported load of given

configurations as can be done with the linear

programming approach of DC-PET.

The majority of simulations are restricted to assessing

the performance of the networking domain only. Some

work on simulating job scheduling also exists. Although

Buyya et al. claim to simulate both network and servers,

the results presented in [7] relate to the server domain

only. Kliazovich et al. simulate both networking and

server domain, but their focus is on energy consumption

[8]. DC-PET is based on the principle of co-simulating

both network and server domains for performance

assessment.

To the best of our knowledge we are the first to

develop an LP-based network and service simulator for

large-scale data centers.

11. Conclusion

Designing data centers with the right size is hard.

Even if incoming traffic is known or at least

appropriately estimated, the traffic arising inside the data

center between application components and the

interactions of traffic within and across applications are

hardly known and make sizing of applications and data

centers difficult. We developed a data center planning

and evaluation tool called “DC-PET” which aims at

helping designing a data center by assessing the

performance of design alternatives.

DC-PET uses linear programming to perform its data

center analysis. LP has the main advantage of quickly

providing results. On the downside, the analysis happens

on a statistically abstracted level and does therefore

provide only limited detail. Our experience is that the

results are helpful for sizing applications and for

comparing different deployment options.

So far, we only simulated the load of a large-scale

Web application. In the future, we plan to add other

applications to the portfolio and simulate their behavior

both in isolation as well as in combination with other

applications. The results are expected to improve the

quality provided by data centers while minimizing costs

helping DC-PET’s users increase their competitiveness.

12. References

[1] Al-Fares, M., Loukissas, A., and Vahdat, A., "A scalable,

commodity data center network architecture", SIGCOMM

Comput. Commun. Rev., 38, 4, 2008, pp. 63-74.

[2] Cisco Systems Inc., Cisco Data Center Infrastructure 2.5

Design Guide, 2007. http://www.cisco.com/application/pdf/en/u

s/guest/netsol/ns107/c649/ccmigration_09186a008073377d.pdf

[3] Garver, L. L., “Transmission Network Estimation Using

Linear Programming”, IEEE Transactions on Power Apparatus

and Systems, PAS-89, 7, September 1970, pp. 1688-1697.

[4] Xiao, Y, Thulasiraman, K., and Xue, G., “QoS Routing in

Communication Networks: Approximation Algorithms Based

on the Primal Simplex Method of Linear Programming”, IEEE

Transactions on Computers, 55, 7, July 2006, pp. 815-829.

[5] Chang, J., Tassiulas, L., “Maximum lifetime routing in

wireless sensor networks”, IEEE Transactions on Networking,

12, 4, August 2004, pp. 609-619.

[6] Wang, Y., Wang, W., Li, X., Song, W., “Interference-

Aware Joint Routing and TDMA Link Scheduling for Static

Wireless Networks”, IEEE Transactions on Parallel and

Distributed Systems, 16, 12, December 2008, pp. 1709-1725.

[7] Buyya, R., Ranjan. R., and Calheiros, R. N., Modeling and

Simulation of Scalable Cloud Computing Environments and the

CloudSim Toolkit: Challenges and Opportunities, in

Proceedings International Conference on High Performance

Computing & Simulation, Leipzig, Germany, June 21-24 2009.

[8] Kliazovich, D., Bouvry, P., Audzevich, Y., and Khan, S. U.,

“GreenCloud: A Packet-level Simulator of Energy-aware Cloud

Computing Data Centers”, in Proceedings IEEE Globecom

2010, Miami, FL, USA, December 6-10 2010.

