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Abstract 

Designing data centers with adequate performance 

and at the right scale is a difficult task. The load in terms 

of network and CPU utilization is hard to estimate 

without appropriate tools. In this paper we introduce a 

data center performance estimation system which can 

support planning data centers and application 

deployments. The tool takes data center topologies and 

applications and calculates the load expected on the 

server and networking infrastructure. To quickly produce 

results, the data center evaluator uses linear 

programming.  

1. Introduction 

Data centers (DCs) are the backbone of the current 

information infrastructure. They not only process Web 

traffic, but also manage company-internal processes, 

satisfy storage needs, and facilitate communication and 

collaboration. Data centers are large and complex setups 

of compute, storage and network devices. With the 

advent of the cloud operating model, more and more 

storage and compute loads are aggregated in ever-larger 

data centers.  

Building a data center includes many design 

decisions, including the selection of a network topology, 

the link bandwidth, and the server capacity. As data 

centers are large, complex systems, tool support is 

desired to guide the decisions. The majority of questions 

arising in the design phase are “what-if” kind of 

questions where DC designers want to quickly see what 

happens if some parameters change, e.g. the network 

topology or the application work load. For these kinds of 

questions, perfect accuracy is not as important as the time 

needed to get an answer. Rough estimates are enough to 

support the design process. 

In order to make designing data centers easier and to 

facilitate their comparison, the authors are developing a 

data center planning and evaluation tool (called DC-

PET). The tool allows assessing the impact of particular 

workloads on the data center infrastructure. Many 

parameters can be adjusted in order to make answering 

“what-if” questions possible. The tool is based on linear 

programming letting it produce answers quickly.  

This paper introduces the capabilities of the DC-PET 

tool. The methods for modeling data centers and 

applications are detailed. The statistical metrics that the 

tool can calculate and display are described and some 

initial results are presented.  

2. Data Center Modeling 

For allowing DC-PET to analyze data center load, all 

relevant artifacts of the data center must be modeled and 

expressed in a machine-processable way. The model 

consists of two main abstractions: the physical hardware 

and the applications deployed on that hardware. In this 

section, the abstractions used to describe data center 

hardware are introduced.  

The physical data center hardware contains devices 

and links between them. The devices perform various 

functions while the links are used to exchange 

information between the devices. The following device 

types are supported by DC-PET: 

Switches: Switches connect multiple devices, such as 

servers and other switches. They relay traffic from 

one link to another. 

Servers: Servers host and run (parts of) applications. 

Servers are general-purpose in the sense that they can 

host any type of application function. Depending on 

the applications running on the server, incoming 

traffic can result in further traffic originating at the 

server, i.e., a single incoming request can result in 

one or more outgoing chunks of data.  

A data center might contain servers that are designed 

to perform only specific functions. They are therefore 

not general-purpose anymore and only application 

components performing a compatible function are 

allowed to be assigned to these dedicated servers. 

Examples are load balancers, firewalls, and storage 

servers. Within DC-PET, servers can be assigned to 
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arbitrarily defined groups. Every server can be part of 

one or multiple groups. The deployment of 

application components can then be restricted to 

servers of certain groups. 

Gateways: A gateway represents a connection of the 

data center to the outside world, which means, 

usually, “the Internet” or the data center backbone 

network. In our model we assume that all traffic in 

the data center is directly or indirectly created by 

requests entering the data center from the outside 

through a gateway. Traffic and application execution 

that is completely internal to the data center can be 

modeled by additional gateways that produce the 

triggers for the internal traffic.  

The devices are connected via physical links which 

allow traffic to flow between them. Different topologies 

can be used to wire data centers.  DC-PET currently 

supports fat-tree and n-rooted-tree (including single and 

double rooted tree) topologies. Other topologies can be 

plugged in on demand.  

All components in the data center model have certain 

restrictions. Links have a maximum bandwidth that 

restricts the amount of traffic that they can carry. Servers 

have a maximum processing capacity that restricts the 

work load that they can process.  

3. Application Modeling 

Applications in DC-PET are modeled as distributed 

collaborating components. Each component is called a 

functional block. Applications are represented as graphs 

of functional blocks. Analogous to the physical data 

center model, functional blocks (the graph’s vertices) 

perform various functions and the links (the graph’s 

edges) are used to exchange information between the 

functional blocks. Each link between two functional 

blocks represents a traffic “flow”.  

The links in application models are annotated with 

traffic figures. These figures describe how much traffic 

passes through the link in a particular direction as a 

response to a request coming to the application from the 

gateway. Each incoming request may result in a number 

of subsequent onward requests and ultimately in a 

response sent back to the originator of the initial request. 

For example, a Web server that receives a request for a 

particular Web page might need to fetch the page from a 

storage server and a number of data items to be included 

in that page from a data base server. Each incoming 

request therefore results in one onward request to a 

storage server and, for example, three requests to the data 

base server. The Web server then creates the Web page to 

be delivered to the user and sends back a response. All 

data exchanges can involve different amounts of traffic 

being exchanged, depending on the protocol used and the 

type of data being exchanged. The amount of traffic also 

linearly increases with the number of requests made to 

the application. 

In real applications, many requests will not always 

occur, but might only happen with a certain probability, 

e.g. when data is cached. To accommodate this in 

applications models, in addition to the request size, there 

is the probability with which a particular request happens 

(averaged over a large number of requests). Both request 

size and request probability are part of application 

models. In Figure 1 they are attached to links as “R” and 

“S”, meaning request probability and request size 

respectively.  

 
Figure 1: Example application model 

Shown in Figure 1 is a Web server with a cache hit 

ratio of 80%. The remaining 20% of the requests need to 

be forwarded to storage (represented as a request 

probability of 0.2). As a different protocol is used for 

accessing storage, not only is the request probability 

lower, but so is the amount of data per request (200 bytes 

instead of 1000 for HTTP requests).  

In addition to the traffic numbers on links, functional 

blocks are annotated with CPU figures. These figures 

specify how many requests can be handled by the 

functional block at maximum. The Web server 

component in Figure 1, for example, could handle 20 

parallel requests, if deployed on its own server. The 

storage component, on the other hand, could handle only 

10 parallel requests. 

It is important to note that our model only describes 

statistical traffic and load averages, but not relationships 

between requests with respect to time.  

4. Deployment 

For the data center evaluation, applications are 

deployed onto the data center infrastructure. DC-PET 

maps the functional blocks of all applications to 

appropriate servers in the data center. Multiple functional 

blocks can be deployed on the same physical server, 

representing server virtualization.  

The links between functional blocks are mapped to 

physical links. Each application layer link is mapped to 

one or more physical links and interconnecting devices. 

As data center topologies often offer multiple routes 

between servers, mapping to physical links has a certain 

freedom. The method that calculates and chooses 

particular routes is represented by the routing algorithm – 

both in the real world as well as in DC-PET. DC-PET 
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allows the selection of particular routing algorithms for 

its evaluations. Algorithms might be selected depending 

on particular data center topologies or for fulfilling 

certain requirements. Through this mechanism, DC-PET 

allows the evaluation and comparison of different routing 

algorithms.  

DC-PET can restrict assignment of functional blocks 

to certain servers, thereby modeling servers that have 

specific roles in the data center. The deployment of 

functional blocks can be restricted to certain server 

groups, making the servers of such groups assume 

particular roles. Several algorithms are available that 

cater for specific requirements on the selection of servers 

within a group (e.g., random, round-robin).  

5. Design Options for Data Center 

Evaluation 

Two different options – linear programming and 

packet-based simulation – have been identified for 

implementing the simulation functions. These two 

options, which both have their advantages and 

disadvantages, are briefly described in this section. 

5.1. Option 1: Linear Programming 

Linear Programming (LP) is a mathematical method 

for finding the optimum of a mathematical model (e.g., 

maximum number of requests handled in a data center). 

At its core, LP finds optimal values for a set of unknown 

variables under given constraints. As its name implies, 

LP requires the model to be formulated using only linear 

(in)equalities. Several LP solvers exist, commercial as 

well as open-source, which can solve LP problems with a 

very large number of unknowns in reasonable time.  

LP can be used to model aggregated data center traffic 

and answer certain questions about this model. As an 

example, LP can be used to determine how many service 

requests a certain data center setup can handle.  

5.2. Option 2: Packet-Based Network Simulation 

For many years networks have been simulated by 

mimicking the packet transport between the nodes (e.g., 

server, switches) as well as the node behavior itself 

(delays, queues, network protocols, etc.). This approach 

allows for a very flexible, and – if necessary – very fine-

grained and realistic simulation of all processes in the 

network. Furthermore, a variety of statistics can be 

collected during the simulation which allows the 

calculation of a large number of different networking and 

service metrics.  

5.3. Assessment 

Packet-based simulation is a proven technology that 

allows calculating a large variety of metrics. The main 

issue of a packet-based network simulation is that it is 

very time consuming. The time required for a simulation 

is, of course, dependent on the number of nodes and 

services to be simulated as well as on the level of detail 

used. If the level of detail is, however, reduced in order 

to shorten the simulation time, the accuracy of the 

simulation results might drop accordingly.  

The main advantage of a data center evaluation tool 

based on linear programming is that it potentially 

supports analyzing several thousand servers and their 

services in a reasonable amount of time. All our 

simulations presented in section 9 run in under five 

minutes with most of them taking less than one minute. 

The purely mathematical modeling of a data center 

with LP however has some limitations. These limitations 

mostly stem from the fact that for LP the formulation can 

use linear functions only. This limits the number of 

metrics which can be evaluated using LP. Certain metrics 

which might be interesting for a data center evaluation 

cannot be calculated by a linear mathematical formula 

(e.g., the number of dropped packets at a switch).  

Another disadvantage of LP is that only a statistical 

abstraction of a real data center is modeled. While the 

results generated by the LP solver might be 

mathematically correct for the given LP model, such 

conditions might never exist in a real data center. Take, 

for example, a data center that hosts two identical 

applications. When finding the maximum number of 

requests that can be handled by the applications, one 

would expect each application to receive an equal share. 

In contrast, LP solvers will usually find a solution that 

apportions all requests to one application instance, 

leaving the other one with no requests. Although this is a 

mathematically correct solution, it might not occur in the 

real world.  

For DC-PET, we chose to follow a linear 

programming based approach to estimating data center 

performance. The main reason was the much faster 

execution time of LP simulations when compared to a 

packet-based approach. It was decided that quick 

responses are more important than fine-grained results. 

To avoid extremely unfair traffic assignments, DC-PET 

includes some provisions that improve fairness of request 

and bandwidth assignments. 
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6. Simulation Process 

An LP solver is a generic tool used 

to solve problems given in a specific 

mathematical form. The solver itself 

does not know about the physical data center, application 

models, and the traffic existing in the data center. These 

artifacts therefore need to be translated into a form that is 

suited for the LP solver.  

The first step in our simulator is to merge the 

application models and the physical data center model. 

As shown in Figure 2, this is done by deploying the 

applications on the data center meaning that the 

functional blocks of applications are assigned to servers. 

Next, flows of traffic between the functional application 

blocks are created. As these flows might traverse 

multiple physical devices, the flows must be routed 

appropriately.  

Routing is the only network-related function that is 

still explicitly modeled in the LP-based data center 

evaluation tool. Although the routing algorithm is not 

applied to each and every packet (as there are no 

individual packets in the LP problem), the assignment of 

traffic flows (i.e., chains of packets) to physical links 

through the network is still handled by the routing 

algorithm. As this assignment only happens once when 

setting up the LP problem, it does not exhibit any 

dynamic properties and therefore assumes a static 

network that does not exhibit any link or device failures. 

Although this is not the case in reality, it is a reasonable 

assumption for approximating traffic load on links. As 

the routing algorithm affects the assignment of traffic to 

links, it has a large influence on the traffic load and 

therefore on the performance of the data center.  

The results of deployment and routing are expressed 

as linear equations which are one main input to the LP 

solver.  

The other main input to the LP solver are the 

constraints on link bandwidth and server CPU capacity. It 

must be guaranteed that the combined traffic on a 

physical link does not exceed the capacity of that link. 

Furthermore, the capacity of the servers should not be 

exceeded by the applications assigned to them. These 

restrictions can be modeled as specific inequalities. 

DC-PET automatically creates the equations needed 

for expressing deployment, traffic routes, and capacity 

restrictions. The created LP formulation can then be 

worked on by an LP solver which takes care of finding 

the actual solution for the specified problem. 

Once a solution has been found, the LP solver’s 

results are transformed back into the data center and 

application model space. Additionally, metrics which 

have not been directly calculated by the LP solver are 

derived from its results, e.g. link utilization. These two 

steps are performed in the “Post-processing” step.  

7. Linear Programming Formulation 

In this section, we provide the LP formulation used by 

DC-PET. DC-PET transforms the given network and 

application models into a corresponding LP formulation 

and – after running the LP solver – extracts the results 

and translates them back into the model domain. 

The objective function of the LP system is to 

maximize the total number of requests which are handled 

by the data center: 

 ∑
∈Aa

aRmaximize   

with A being the set of all applications deployed and 

Ra being the number of requests handled for application 

a, a∈A. This maximization is subject to several 

conditions.  

The first set of conditions ensures that no link in the 

network is overloaded (link capacity bounds) 

L
U

∈∀≤∑
∈

lcF l

i

i

l  

with Fi being the traffic rate for flow i, L being the set 

of all links in the networks, Ul being the set of all flows 

traversing link l, and cl being the capacity of link l.  

Furthermore, the flow rates Fi are linked to the 

application requests Ra rates via linear weights wi,a: 

aaaii iaRwF ΦA ∈∈= ,,
, 

with ΦΦΦΦa being the set of flows belonging to 

application a. 

Finally, the servers’ CPU utilization must not be 

larger than the servers’ processing capacity, which leads 

to the following set of conditions: 

N
A

∈∀≤∑
∈

nxRu n

a

ana,
, 

with N being the set of all server nodes, xn the 

processing capacity of node n, and ua,n being the CPU 

load caused on node n for each processed request of 

application a. 

From the above equations it can be seen that the LP 

solver needs to maximize the objective function only 

Functional 
Block
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Flow
Creation

and Routing

LP Model
Generation

LP 
Solving

Post-
processing

Figure 2: Simulation Process 
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with respect to the application request rates Ra. Values 

for ua,n are calculated from CPU utilization figures in 

application models and their assignment to servers. 

Values for wi,a are calculated from bandwidth 

consumption figures in application models. The set Ul is 

derived from the routing of the flows between servers the 

functional blocks are deployed on, and xn are constants 

which can be taken directly from the network model. 

8. Metrics 

After the LP evaluation, its results (application request 

rates and flow rates) are transformed into a number of 

metrics that are potentially relevant for assessing the 

performance of a data center. Metrics pertaining to links 

and devices (switches, servers) can be distinguished.  

8.1. Link Metrics 

Data rate: This metric represents the amount of data that 

is transported over a link. This measurement is 

attached to a unidirectional link, specifying the traffic 

that crosses that physical link in a particular direction. 

This measurement is the same as the traffic-in and 

traffic-out values on the ports connected to the 

endpoints of this link.  

Number of flows: This metric represents the number of 

parallel connections that are crossing a link in one 

direction. Each flow relates to one connection in one 

direction between two functional application blocks.  

8.2. Device Metrics 

Traffic-in(-out) rate: This metric represents the amount 

of data that is arriving at (emitted from) a particular 

data center element. The metric is associated with a 

port, which may belong to a switch, a server, or a 

gateway. Elements that contain one or more ports 

possess aggregate measurements of the traffic-in (out) 

rate. 

Flows in (out): This metric represents the number of 

parallel connections that are receiving (sending) 

traffic from (to) a particular port. Each connection 

relates to one connection in one direction between 

two functional blocks.  

CPU utilization: This metric represents the utilization of 

the CPU of a particular server (between 0% and 

100%). 

9. Experiments 

The previous sections introduced the modeling 

abstractions that DC-PET uses to describe data centers 

and applications. This chapter details the DC topology 

and application models that were evaluated with DC-PET 

and shows some results. 

9.1. Data Center Topologies 

Our simulations were run on two different networking 

topologies: a fat tree and a double-rooted tree. 

Fat-tree networks are oversubscription-free 

topologies, meaning that they have the same aggregate 

bandwidth between all layers. They can be built in the 

form of Clos networks from switches that all have the 

same number of ports and link bandwidth [1]. The main 

parameter for the size of the network, in particular for the 

number of supported servers, is the number of ports of 

each switch. An example fat-tree topology constructed 

from 4-port switches is shown in Figure 3a. The topology 

is structured into five layers: the server, the edge, the 

aggregation, the core, and the gateway layer. In addition 

to the traditional four layers of the fat tree, we introduced 

the gateway layer to model connections to the outside 

world. This layer is somewhat different from the others, 

in the sense that the switch used there can have a 

different number of ports and the links connecting to it 

can have different bandwidths than the other connections 

in the data center. 

Routing in a fat tree is done by moving up and down 

the tree depending on the locations of the traffic source 

and destination. There exist multiple paths between each 

layer of the tree. The simplest way to distribute traffic 

across these paths is to choose a random link at each 

layer whenever multiple links exist which lead to the 

destination without increasing the path length. 

Core

Aggregation

Edge

Servers

Pod

Switch

Server

Gatewaya)

Core

Aggregation

Access

Servers

Rack

Switch

Server

Gatewayb)

Figure 3: Data Center Topologies: a) Fat Tree; b) Double-Rooted Tree 
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Double-rooted trees are the currently prevailing 

topology for data center networks. As shown in Figure 

3b, they consist of a number of layers, namely the access, 

aggregation, and core layers [2]. Servers are part of the 

access layer and are connected to a top-of-rack switch, 

usually with a single uplink. From there, the two roots 

emerge, with both being able to replace each other for 

redundancy. The aggregation layer concentrates the 

traffic from the access switches and passes it on to the 

core network of the data center.  

To cater for the concentration of traffic towards the 

root, the links between the different layers in the double-

rooted-tree topology usually provide increasing 

bandwidth capacities towards the root.  

9.2. Application Model: Wikipedia 

The example application model that we used for 

evaluating data center performance is a Web serving 

example modeled closely after Wikipedia (see Figure 5). 

It resembles the structure, traffic patterns, and sizes from 

Wikipedia as closely as possible. The model is simplified 

from the real Wikipedia architecture, mostly be removing 

the functional blocks that do not deal with the (arguably) 

main task of Wikipedia of serving Web pages. The links 

and functional blocks are annotated with statistical 

numbers taken from various sources on the Web
1
.  

 
Figure 5: Wikipedia application model 

                                                           
1 The Wikipedia architecture is shown in http://upload.wikimedia.org/ 

wikipedia/commons/f/ff/Wikimedia-servers-2008-11-10.svg, and a 

number of statistics are given at http://old.nabble.com/wikipedia-

servers-and-statistics-td21186836.html.  

Most functional blocks are replicated within the 

Wikipedia model. Such replication is usually introduced 

for load balancing reasons, in order to increase the 

capacity of the function provided by that block. Traffic 

going into such functional blocks is distributed among 

the participating instances according to some scheme. 

Various schemes are possible. For our experiments, we 

chose a uniform distribution, i.e., every functional block 

of a certain type processes exactly the same amount of 

traffic.  

9.3. Setup 

We evaluated the Wikipedia application as described 

in the previous section on fat-tree and double-rooted-tree 

networks. All links in the fat tree have a capacity of 1 

Gbps while the links in the double-rooted tree have 

capacities of 1 Gbps between the servers and the top-of-

rack (ToR) switches and 10 Gbps between the ToR and 

the aggregation switches. The links to the gateway layer 

have unlimited capacity in both topologies.  

The fat-tree topology has been evaluated in two sizes. 

One setup is constructed from 12-port switches (FT12), 

the other one from 24-port switches (FT24). The data 

centers host 432 and 3456 servers, respectively. The 

double-rooted tree (DRT) consists of nine racks with 48 

servers each (and a single 48-port ToR switch per rack), 

giving the setup the same number of servers (432) as the 

small fat-tree scenario.  

In the experiments, every server hosts one functional 

block at the maximum. We used three different 

deployment algorithms: sequential, sequential/random, 

and random. The sequential deployment algorithm 

selects servers for functional blocks in a purely 

sequential fashion, meaning that all functional blocks of a 

particular type are deployed “next” to each other (see 

Figure 4). Mapped to the data center topology, this means 

that some racks/pods are filled completely with one type 

of functional blocks (FBs), namely caches and web 

servers. Uplinks from these racks/pods therefore carry 

traffic from these FBs only. 
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The sequential/random deployment still sequentially 

selects servers (meaning that computation and traffic load 

are aggregated in a certain part of the data center), but 

assigns functional blocks in a random fashion. Different 

traffic originating from the different types of FBs is 

therefore spread more equally across the data center, 

potentially resulting in better performance.  

The random deployment selects servers for functional 

blocks randomly from the complete set of servers. As in 

our experiments only 274 FBs need to be assigned while 

the topologies provide 432 or 3456 servers, the 

computing and network load is spread more widely. 

In addition, we varied the path diversity between 1 

and 20, meaning that the traffic carried by a link between 

two functional blocks is distributed across 1 to 20 

(randomly chosen) routes between data center 

components. Path diversity decreases the chances for 

overloading single links and should therefore ensure 

higher throughput and with it higher performance of the 

data center.  

9.4. Results 

Our experiments provided a number of interesting 

results. First, running the simulations with bounded CPU 

capacity leads to the same performance numbers for all 

setups. There is no influence of the selected network 

topology or the path diversity. The CPU is the bottleneck 

and restricts the maximum throughput. 

Next, we changed the CPU capacity to infinity in 

order to find bottlenecks in the network. The limiting 

factor now are the links between caches and the gateway. 

These links are saturated at an incoming request rate of 

about 1.2M (distributed among 76 cache instances). 

Looking at the results shown in Figure 6, it can be seen 

that this maximum is not always reached. Note that all 

simulations were run 50 times with different random 

number sequences and then averaged. The standard 

deviations are shown in the figure as black bars on top of 

the measurements. 

From the figure it can be observed that the 

deployment algorithm plays an important role in the 

attainable performance. Spreading functional blocks and 

thereby distributing network load more equally increases 

overall throughput. The second observation is that adding 

diversity to flows increases throughput. This effect is 

more pronounced in fat-tree topologies than in the 

double-rooted tree. The third observation is that the 

double-rooted tree performs worse with sequential 

deployment due to fully utilized links between the access 

and the aggregation layers because of the 

oversubscription ratio. Another interesting observation is 

the high standard deviation for the FT24 low diversity 

deployments. It highlights that some random placements 

perform much worse than others. Path diversity is 

therefore a necessity for efficiently utilizing fat-tree 

networks.  

Digging deeper into the simulation results (not shown 

here) reveals that in the double-rooted tree, links between 

access and aggregation layer are utilized most (average: 

about 60%), compared to about 10% average utilization 

at the access/server level. Looking at the distribution of 

link utilization within the access level reveals an uneven 

distribution: some links are fully utilized while others are 

not used at all. Utilization of links in a 12-ary fat tree is 

more evenly distributed with the average maximum close 

to 10% on all layers. 

10. Related Work 

Linear Programming (LP) is a commonly used 

technique for solving optimization problems in various 

domains. It has been used for optimizing electrical power 

networks [3] and has also been applied to communication 

networks, especially in the areas of QoS routing [4][5] 

and joint scheduling and routing problems [6]. The LP 

formulations often make use of integer variables leading 

to an Integer Linear Programming or Mixed Integer 

Linear Programming problem. Both types are known to 

be NP hard.  
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Instead of using LP, simulations of the behavior of 

communication networks often use event-based 

simulations on the level of individual packets, including 

[8]. Most common is the use of ns-2, an event-based 

simulator. Packet-level simulations are trying to 

reproduce network behavior as closely as possible and 

can therefore produce detailed and accurate results. 

Besides their disadvantage of requiring large amounts of 

time to generate results, packet-level simulators cannot 

determine the maximum supported load of given 

configurations as can be done with the linear 

programming approach of DC-PET.  

The majority of simulations are restricted to assessing 

the performance of the networking domain only. Some 

work on simulating job scheduling also exists. Although 

Buyya et al. claim to simulate both network and servers, 

the results presented in [7] relate to the server domain 

only. Kliazovich et al. simulate both networking and 

server domain, but their focus is on energy consumption 

[8]. DC-PET is based on the principle of co-simulating 

both network and server domains for performance 

assessment.  

To the best of our knowledge we are the first to 

develop an LP-based network and service simulator for 

large-scale data centers. 

11. Conclusion 

Designing data centers with the right size is hard. 

Even if incoming traffic is known or at least 

appropriately estimated, the traffic arising inside the data 

center between application components and the 

interactions of traffic within and across applications are 

hardly known and make sizing of applications and data 

centers difficult. We developed a data center planning 

and evaluation tool called “DC-PET” which aims at 

helping designing a data center by assessing the 

performance of design alternatives.  

DC-PET uses linear programming to perform its data 

center analysis. LP has the main advantage of quickly 

providing results. On the downside, the analysis happens 

on a statistically abstracted level and does therefore 

provide only limited detail. Our experience is that the 

results are helpful for sizing applications and for 

comparing different deployment options.  

So far, we only simulated the load of a large-scale 

Web application. In the future, we plan to add other 

applications to the portfolio and simulate their behavior 

both in isolation as well as in combination with other 

applications. The results are expected to improve the 

quality provided by data centers while minimizing costs 

helping DC-PET’s users increase their competitiveness.  
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